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The impact processes of solids are generally accompanied by fracture, the type of fracture depending 
on the properties of materials of bodies, the shape of a projectile, the impact velocity, and on the relative 
geometric dimensions of bodies. In the general case, some combination of fracture types is observed [1, 2]. 
It is possible to make one of the fracture types predominant by choosing the parameters of colliding bodies. 
For example, fracture of a plastic-puncture type occurs when a pointed projectile made of hardened steel 
penetrates into a soft target [3]. Spalling is observed when a thin plate hits a target of finite thickness [4]. The 
interaction of a solid cylinder with a flat front section leads to shear fracture of the target with knocking-out 
of a plug. 

In the numerical solution of problems of high-speed impact of bodies being deformed, the fracture 
processes can be simulated by one of the following techniques: 

(1) The fractured medium remains continuous, and the stress tensor is corrected using the functional 
relations [6, 7]; 

(2) An explicit separation of macroscopic fracture surfaces by adding the difference-grid nodes so that 
these surfaces pass over the cell boundaries; the limiting case is splitting of the fractured region of the body 
into fragments containing one or several difference cells [8-10]; 

(3) An alternative method of explicit separation of macroscopic fracture surfaces is the local 
reconstruction of the destroyed cell; this method is more general, because there are no limitations related 
to the cell boundaries of a difference grid [4]; 

(4) The medium is assumed to consist of discrete particles of regular shape and different sizes, and the 
particles interact according to certain laws; deformation of such a medium can be followed by the change of 
the neighbors and also by the formation of new links [11, 12]. 

In the present paper, we propose a continuum-discrete approach for representation of the medium in 
numerical simulation of high-speed impact processes with allowance for fracture [13-15]. An approach using 
a similar concept was used in [16, 17]. 

The Lagrangian approach is widely used to describe unsteady processes in the mechanics of deformed 
solids. This approach involves direct calculations of the motion of the free boundaries of bodies and of the 
contact surfaces between the interacting bodies, and there is no artificial overflow of materials between the 
regions containing different materials, which allows one to trace the history of any material particle. 

Equations of the Prandtl-Reuss elastoplastic model and the formulation of the problem of collision 
of deformed bodies were considered in detail in [18-20]. Since the interaction of bodies causes fracture of 
materials, the model should be supplemented by a number of fracture criteria which were chosen as the 
maximum tensile and compressive (for brittle materials) strains and stresses, the maximum shear strains, the 
internal energy, and the damage parameter X = 1 - p/po for p < p0: 

Ir162 IO'll<O',, (1) 
Here r and "71 are the maximum extension and shear strains, crl is the maximum tensile stress, and e., ~r., 
7., and e. are the limiting strength characteristics of the material. If the current value of the corresponding 
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function exceeds any of these criteria, the medium in this material particle is in a damaged state which is 
understood as the medium's state resistant only to bulk compression. A particular case of such a material 
can be liquid. The parameter X characterizes the ability of a damaged medium to remain continuous in bulk 
expansion when the substance density becomes lower than the initial one and amounts to a few percent (if 
X > X,, then the medium is considered completely destroyed). 

All constants in the initial equations and the initial and boundary conditions are assumed to be 
specified. A modified Wilkins's method is used for numerical solution of the problems of collision of bodies [15. 
18]. The following quantities are known in each cell of the difference grid: current density of the material, stress 
and strain-rate tensors, and specific internal energy. The velocity coordinates are referred to the difference-grid 
nodes. The computational algorithm is implemented in such a way that if at least one of the criteria (1) is 
satisfied in a cell of the computationM grid, the equation of state of the material changes in this cell, the cell 
itself being marked as damaged. 

Then, if the cell marked as damaged is located at the computational-domain boundary and the damage 
criterion rearJaes a critical value, the material of this cell is replaced by discrete particles whose radius is 
calculated from the condition of inscription of one or several particles in the cell. The mass of this cell is 
distributed over the discrete particles. Only one layer of the boundary cells can be transformed to discrete 
particles during one time step, because it is assumed that  the velocity of the fracture-wave front does not 
exceed the velocity of disturbance propagation in the medium. Thus, under certain conditions in the course of 
interaction, the bodies can be split into fragments or even become "worked out," i.e., they can be completely 
replaced by a system of discrete finite-size particles. 

The representation of the vector of the forces acting upon a material particle as a sum F + R is a key 
point in the difference equations of motion. Here F is determined in terms of the stress-tensor components, 
while R = 0 for the internal nodes and is calculated for the boundary nodes [20, 21]. This allows one to use 
a single algorithm for calculation of the contact boundaries between the continuous material, between the 
particles and the intact medium, and also between the discrete particles. 

For each elementary act of interaction, calculations are carried out in two stages. At the first stage, the 
vector R = 0, and the intermediate positions of the particles and of the boundary nodes are determined. The 
positions for which the no-slip condition can be violated are then found. The second stage of calculations can be 
demonstrated by the example of a discrete particle and the continuous-material boundary (Fig. 1). If, for the 
intermediate position of a particle c and the nodes of the boundary section ab, the distance from the particle 
center to the section is smaller than the particle radius, the equations of equilibrium and momenta relative 
to the point k (Fig. 1) are written for the normal components of the vectors Re, Ra, and Rb. Substituting 
these relations into the condition of equality of the normal velocity-vector components at the point k, we find 
the normal components of the reacting-forces vector. With a friction law specified, a similar procedure can be 
used to calculate the tangential component of these forces [20]. 

Since the discrete particles are assumed to be incompressible, their motion is determined only by R. If a 
particle interacts with a set of particles, the force vectors are summed over the entire set. Thus, introduction 
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of the force R allows one to develop a uniform algorithm for solving the equations of motion of material 
particles. 

The approach described above was implemented on KRUG24 software intended for solution of a class 
of problems of impact interaction of elastoplastic bodies in the two-dimensional case. 

As an example, let us consider the solution of the problem of penetration of a lead bullet through 
aluminum targets. A similar problem was studied experimentally in [22] for a system of aluminum plates 
with different thickness, strength properties, and gaps between them. The initial data for computations were 
taken from [22]. The lead bullet was assumed to be nondestructible and to have a mass of 11 g, a radius of 
0.278 cm, and a spherical forebody. The velocity range was 350-390 m/see. The parameters that characterize 
the material properties were as follows: p0 = 11.34 g / cm 3, K = 50 GPa, # = 5.7 GPa, and Y0 = 0.03 GPa 
for lead and p0 = 2.7 g / cm 3, K = 73 GPa, # = 24.6 GPa, Y0 = 0.28 GPa, r = 0.4, and X. = 0.03 for an 
aluminum alloy 6061-T6. 

Figure 2 shows the initial difference grid in the bullet and in some part  of the target. For numerical 
solution of this problem, a series of methodical computations was performed to find out the effect of the grid 
parameters. In these computations, a further increase in the number of ceils of the difference grid was found 
not to lead to a noticeable change of the final result and increases only the computation time. Besides, it was 
found that one particle for one cell is sufficient when the destroyed material is replaced by discrete particles. 

The computations have shown that the best agreement with experimental data  on the residual bullet 
velocity is achieved using the first criterion from (1) in the fracture model. The value of e.  was found from 
the computations of penetrat ion through one plate 1 m m  thick and was used in subsequent calculations. It 
should be noted that  r = 0.4 lies in the range of tabular values of the limiting tensile strain for aluminum 
alloys, which is indicated in various handbooks. 

Three target configurations were chosen for analysis: a monolithic target 3 mm thick, three 1-mm-thick 
contact plates, and a system of three spaced-apart plates, each 1 mm thick. The initial impact velocity was 
U0 = 355 m/see. 

The process of the bullet-target  interaction depends considerably on the type of a target. For example, 
a typical feature of damage of a target with spaced-apart layers is the fact that piercing of the first layer 
occurs like plug knocking-out. The bullet with the at tached plug then contacts the next layer where the 
process is repeated. For a large number of layers, the remnants from the previous layers are accumulated 
ahead of the bullet, and the layers adjacent to the bullet are gradually destroyed completely. Finally, when 
the bullet penetrates through the entire target, it brings out, ahead of it, the partially intact fragments of the 
layers. Piercing through a spaced-out target is illustrated in Fig. 3. 

When the bullet penetrates through a monolithic target, at the first stage the fracture process is 
localized above the bullet forebody. After that, a zone of target-material fracture arises at the projectile 
periphery which grows up to the back surface. This results in the formation of a plug whose thickness is 
slightly smaller than the target thickness. Figure 4 shows the calculated results for the case of penetration 
through a monolithic target for different t ime moments. 
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A specific feature of penetration through a target of three contact layers is the fact that fracture occurs 
primarily in the first layer. The subsequent layers undergo strong deformation, and the layers are separated. 
In these layers, fracture begins at the symmetry axis where the region of maximum tensile strains is located. 
The process of interaction for this case is shown in Fig. 5 for different time moments. 

In Fig. 6, the calculated results are compared with the theoretical and experimental ones [22] in the 
coordinates (AU/Uo, H) for the alloy 6061-T6. Here U0 is the initial bullet velocity, and AU is the loss of 
velocity in penetrating through a target of total thickness H. Figure 6 shows data for three types of targets: 
a target with contact layers (1), a monolithic target (2), and a target with spaced-apart layers (3). The 
theoretical curves and the experimental points are taken from [22]. One can see that the calculated results 
are in good agreement with experimental ones. In particular, the experimentally observed fact that the target 
with contact layers has the highest resistance was confirmed. 

Thus, the proposed model of fracture and the computational method allow one to calculate effectively 
the processes of interaction of deformed bodies within the framework of the Lagrangian approach. This is 
confirmed not only by qualitative but also quantitative agreement between the calculated and experimental 
results. 
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